Thursday, October 26, 2017

Mosses of Central Florida 35. Pyrrhobryum spiniforme

Pyrrhobryum spiniforme growing in Hawaii.  Photo by Alan
Cressler.

Pyrrhobryum spiniforme (Hedwig) Mitten (Rhizogoniaceae) is a distinctive moss with upright to leaning leafy shoots with narrow, spiny leaves.  The elongate leaves have a strong, conspicuous midrib, and are conspicuously toothed, particularly at the tip and even on the lower side of the midrib.  Leaf cells are roundish, with thick walls

This species occurs mostly at tree bases and on rotting logs. The fresh leafy shoots have a feathery appearance, and the leaves become somewhat twisted or curved when dry. The spore capsules are bent to the side, resembling the heads of birds.  Stalks of the capsules arise from near the bases of the leafy shoots.
The narrow leaf has a strong,
conspicuous midrib, and
prominent teeth along the
margins.
A dried specimen of Pyrrhobryum spiniforme,
from Lassiter 643 (USF)




A closer view of the spiny leaf margin and roundish cells of Pyrrhobryum
spiniforme.
Pyrrhobryum spiniforme is 
widespread around the world
in the tropics, and in North America is found in Florida and the southern parts of Georgia and the Gulf states to Louisiana. In Florida, we have collections only from Highlands County northward into the panhandle, though it might be expected further south with further exploration.

This species was formerly known as Rhizogonium spiniforme, and often filed under that name.  


Monday, October 23, 2017

Mosses of Central Florida 34. Callicostella pallida

The branching leafy shoots of Callicostella pallida adhere
closely to this piece of decaying wood. Photos from Lassiter 
2028 and 2029 (USF).
Callicostella pallida (Hornschuch) Ångström (Pilotrichaceae) is a small, creeping moss found on tree
bases, exposed roots, rotting logs, limestone, and occasionally on submerged rocks, often in deep shade. The indefinite, branching leafy shoots cling closely to their substrate. The ovate to elliptical leaves are distinctive for their double ribs, which don't reach to the tip.  Leaf cells are roundish to rectangular, with distinctive papillae, at least near the leaf tip. Spore capsules are symmetrical, somewhat swollen but narrowed below the expanded tip, and turned sideways by a bend in the upper stalk.

Callicostella pallida can readily be recognized by the unusual
double ribs.
This species, sometimes filed under the older name, Schizomitrium pallidum, so far is known from Louisiana, Alabama and Florida.  In Florida, it is found from Alachua and Clay Counties southward.

The spore capsules are swollen but constricted below the larger
tip, and bent to the side by a hook near the top of the stalk.
From other members of the family Pilotrichaceae, including Cyclodictyon varians, found in north Florida, with an unverified report from Hillsborough County, Callicostella differs by its more rounded and papillose leaf tip.
The cells at the tip of the leaf are papillose, i.e. contain small, hard,
translucent bumps, seen here as tiny, yellowish bright spots.


Thursday, October 19, 2017

Mosses of Central Florida 33. Rhynchostegium serrulatum

A spreading colony of Rhynchostegium serrulatum.  All
photos by Robert A.Klips, Ohio Moss and Lichen Association.
Rhynchostegium serrulatum (Hedwig) A. Jaeger (Brachytheciaceae) is a spreading, mat-forming
Leaves are notably toothed and the midrib peters out before
the tip. Cells are long and worm-like.
moss found on soil, rotting wood, and tree bases. Leafy stems grow indefinitely with numerous leaves spreading mostly to the two sides of the stem.  Spore capsules arise from along the stems, and are strongly curved.  Leaves are spiny along the margins, particularly toward the tip.  The midrib is relatively weak, generally not reaching the tip.  Leaf cells are elongate and curved, with thick walls, what I often refer to as worm-like.
Spore capsules are strongly arched, with
a swollen tip.

From it's bent spore capsules and spreading leafy stems, this species could be mistaken for the common Isopterygium tenerum. Even the elongate, worm-shaped leaf cells are similar.  But the most obvious difference is the presence of a midrib here, which is lacking in Isopterygium and the greater number of teeth along the leaf margin.  The capsules of Rhynchostegium are also more slender and more bent, almost into a U-shape, but with the tip enlarged and more cone-shaped.  Differences between the Brachystegiaceae and the Hypnaceae, to which Isopterygium belongs, are obscure and technical.

Rhynchostegium serrulatum is found throughout eastern North America, as far west as New Mexico, and north to Ontario and Quebec. In Florida, it appears to be distributed throughout the state.  Gaps in county records are more likely due to lack of collections than absence of the species.

Tuesday, October 17, 2017

Mosses of Central Florida 32. Trematodon longicollis

Trematodon longicollis Michaux (Bruchiaceae) is a fast-growing moss that
colonizes bare soil, forming small clumps.  Stems are short, upright, and bear a few narrow, elongate leaves.  The massive midrib extends to the tip of the leaf.  Leaf cells in the narrow blade on either side of the midrib are irregularly squarish.

Trematodon longicollis appears on bare soil.  This colony appeared in a flower bed that had been turned over just a few weeks earlier.  Note the thick, tapering neck below the more swollen spore chamber.
The most distinctive feature of this moss is the thick, tapering neck below the spore chamber of the capsule.  The neck in this species occupies about 2/3 the length of the capsules, which are curved slightly to the side atop long stalks.
On either side of the massive midrib, one can see the irregular
cells of the blade, that range from squarish to triangular.
Trematodon longicollis occurs in the eastern U.S. as far west as Texas and
Oklahoma, and to Pennsylvania in the north.  In Florida, it has been collected spottily throughout the state.


Friday, October 13, 2017

Mosses of Central Florida 31. Ephemerum crassinervium

The tiny rosettes of Ephemerum crassinervium
appear scattered on a mass of green,
thread like stems (protonemata). Photo by Robert
A. Klips, Ohio Moss and Lichen Association.
Ephemerum crassinervium (Schwaegrichen) Hampe (Ephemeraceae) is a tiny moss that is often overlooked.  As the name implies, it is an ephemeral plant that pops up in disturbed soil along drying shorelines in the dry season, and occasionally on rotting logs.  The plants then disappear again as their habitat is flooded during the rainy season.

The tiny rosettes are only a few mm high, though the spreading leaves may be as much as 2.5 mm long.  Leaves are toothed in the upper 2/3 and papillose (with small, translucent bumps) at the tip.  The midribs are weak, sometimes not evident at the base.  Leaf cells are irregularly long-rectangular and lined up in vertical rows.

The spherical spore capsules are also tiny and
often overlooked. Photo by Robert A Klips,
Ohio Moss and Lichen Association.
The spore capsules, when they appear, are also barely noticeable, as they lack a stalk and remain nestled in the center of the rosette.  The spherical capsules do not open regularly like most other mosses, lacking the typical mouth, teeth, and lids, but eventually rupture irregularly.

Ephemerum crassinervium is found widely in eastern North America, west to Texas and Nebraska, north to Saskatchewan, Ontario and Quebec (but not known in Maine), with some reports from Oregon.  In Florida, it has been sparsely collected from the panhandle to Collier County.

Two additional species have been reported from Florida.  E. cohaerens has been even more sparsely collected throughout north Florida, but not yet in central Floirda.  It differs from E. crassinervium in the smoother cells of the leaf tip, and the leaf cells lined up in diagonal rows.

E. spinulosum has a similar distribution as C. crassinervium, with some in Hillsborough and Manatee counties; cells of the leaf tip are spiny as opposed to smooth or papillose.

Saturday, October 7, 2017

Mosses of Central Florida 30. Atrichum angustatum

For other mosses in this series, see the Table of Contents]

Atrichum angustatum (Bridel) Bruch & Schimper (Polytrichaceae) is a relative of the common Polytrichum commune, but shorter in stature and with distinctly wavy leaves.  The upright stems are 1-2 cm tall, and like other members of the family, have vertical, fin-like sheets of tissue arising from the nidrib. Typically numbering about 10, these lamellae are also wavy.  Polytrichum has up to 20, and these are straight, compact and occupy most of the leaf surface. leaf cells are roundish and bulging to papillose  (with short, hard, translucent bumps).

The upward-facing rosettes of narrow, wavy leaves resemble a tiny bromeliad. The lamellae can be seen along the midrib,  running the length of the leaf. All photos by Robert A. Klips, Ohio Moss and Lichen Association. 
The wavy sheets of tissue, or lamellae, can be seen arising from
the midrib.
Atrichum angustatum occurs throughout eastern North America, as far west as Nebraska and Texas, and as far north as Newfoundland. It can be found typically on exposed soil along roads and trails, as well as on soil exposed by fallen trees. It is uncommon in Florida, with just a few specimens from the northern part of the state down to Manatee County. It has been found in our area on creek banks and Indian mounds.
This reproductive specimen, with its narrowly cylindrical
sporangia, was photographed in Ohio.


This species may be limited in its abundance, in part, because male and female reproductive organs are borne on separate plants, which must occur in close proximity in order to form spores.  Sporangia, when found, are upright and narrowly cylindrical.






Saturday, September 30, 2017

The nearly forgotten art of comparative plant anatomy 2. Palm Fruits

Palm fruits are mostly single-seeded drupes, brightly colored
to attract birds or other animals for dispersal.  The large, hard,
seeds either pass unharmed through the digestive system
or are dropped to the ground as the fleshy pericarp is eaten.
From my brief introduction in "Everything you wanted to know about plant cells but were afraid to ask," you know that sclerenchyma is a collection of cells types characterized by the possession of a thick, rigid, secondary wall.  In the first part of this current series, I showed how sclerenchyma, along with other cell types, contribute to the complex and highly useful material we call wood.

Palm fruits may seem like an odd place to look for sclerenchyma, but I discovered early in my career as a plant taxonomist specializing in palms, that not only are such cell types present, but they are also highly varied in type and arrangement.  They represent an excellent case study for the usefulness of comparative plant anatomy.

One of the functions of sclerenchyma in general is to protect plant tissues from vegetation-chomping animals, and fruits are one of the most vulnerable of plant organs.  Fruits, and the seeds within, fill up with valuable nutrients as they mature.  The seeds must obviously be protected until they can be dispersed and have a chance to produce the next generation.  Fruits, however, are often meant to be eaten as part of that dispersal, but not until the seeds are mature.  So unripe fruits must be protected until then, but must become palatable, sometimes quickly and dramatically, at maturity.

The first layer of defense for the large seed within a palm fruit is something called the locular epidermis.  This is actually the interior epidermis of the  carpel that surrounds the seed proper.  In this layer, the cells often elongate perpendicular to the fruit wall, become pillar-like, closely-packed sclereids as the fruit matures.  Similar layers of cells have independently evolved in the seed coats of legumes.

A well-developed locular epidermis is common among palms of the subtribe Areceae (the large, advanced group that includes the betel nut, Areca catechu), but is quite varied in thickness,  even within genera.  Where it is not present, other forms of sclerenchyma take its place.

Another type of sclerenchyma found in palm fruits consists of individual cells resembling grains of sand, called brachysclereids or stone cells.  Those found in palms are similar to the gritty patches of stone cells found just below the epidermis in pear fruits.  Stone cells may be scattered within parenchyma tissue, grouped in clusters, or found in continuous layers.

In a great many palm fruits, there are also many fibrous bundles, consisting of  narrow, thick-walled fiber cells. As is generally true in vascular plants, fibers occur mostly around strands of vascular tissue (xylem and phloem), as protection for those tissues.  When additional protective functions (as in palm fruits) or supportive functions (i.e. in wood or the fibrous stems of palms and bamboos) are present, the volume of fibrous tissue can become massive and far in excess of what is needed to protect the vascular tissues. 
The fruits of Rhopaloblase ceramica have a very thick locular epidermis (bottom layer), consisting of elongate, pillar-like sclereids, packed tightly together. Above that, are three tiers of massive fibrous bundles that form around vascular tissues. In a band below the outer epidermis, are scattered stone cells (brachysclerieds), stained a purplish red. The very dark tissues present contain tannins.



Often intermixed with the fibrous vascular bundles close to the seed is a tissue with the seemingly oxymoronic name of sclerified parenchyma.  This is a region that begins as normal parenchyma in the young fruit, but become "sclerified" (develop secondary walls) as the fruit reaches its full size. In some of my earlier papers, I referred to this as "sclerified ground tissue," but that was too vague, as there are other forms of sclerenchyma in the ground tissue. (Ground tissue refers to the tissue  that fills the interior of leaves, stems, roots, and fruits, and consists mostly of parenchyma.

In the most specialized of the bird-dispersed palm fruits, we can usually see three distinct zones:

Close to the seed, we find densely packed fibrous bundles, sclerified parenchyma, and often a thickened locular epidermis. These hard tissues are typically fused together into a solid endocarp, or pit, which  remains with the seed when the rest of the fruit is removed.  This helps prevent the crushing of the seed when the fruit is eaten, or its penetration by burrowing insects.

Below the outer epidermis, one can often see an exocarp, a layer of stone cells, cells filled with bitter tannins, and sometimes fibrous bundles that protect against insect penetration.  Stone cells, which occur individually or in small patches, are particularly advantageous in this outer fruit region because they can loosen and separate as the fruit expands.  This allows the fruit to swell as it ripens, becoming more succulent.

Between these outer and inner protective layers, is the larger expanse of tissue referred to as the mesocarp.  This middle region may also be filled with fibrous bundles (the fibrous outer husk of the coconut being an extreme example), but in many specialized fruits it has been cleared of hard tissues, and consists only of soft parenchyma, which can swell as the fruit ripens, becoming fleshy, tasty and nutritious.  Such fruits presumably provide the most food for birds that feed upon them, and so  have a selective advantage.

Such well-defined zones are particularly conspicuous in the Ptychosperma alliance, which I studied as a graduate student.  In this group of palms native to New Guinea, Australia and some Pacific islands, another extraordinary transformation has taken place: the evolution of two radically different kinds of fibrous bundles, one occupying the endocarp, the other occupying the exocarp.

In Heterospathe, "naked" bundles of vascular
tissue are at the bottom, close to the seed, while
bundles further out contain only fibers.
The starting point for this trend can be seen in some palms outside of the Ptychosperma alliance, such as the Rhopaloblaste illustrated above, in which only the inner vascular bundles have a significant amount of vascular tissue, while the outermost bundles have a token amount, if any, and consist mostly of fibers. In the Heterospathe illustrated to the left, fibrous bundles without any vascular tissue are scattered throughout the mesocarp.

In the short spurs of fibers
in Orania, bits of
vascular tissue (ladder-like
protoxylem element in center)
can be found, illustrating the
role procambia in forming
fibrous bundles.
As another example, in the genus Orania, there are short, brush-like bundles of fibers that arise perpendicular to naked vascular bundles. They appear at first to be purely fibrous, but occasionally one can find a trace of mature vascular tissue within them.  This suggests that all fibrous bundles begin with a strand of embryonic vascular tissue (a procambium) as the organizational stimulus, but in specialized bundles, vascular tissues may or may not mature.












In Veitchia, inner bundles contain small
strands of vascular tissue (white spots)
and thick fibrous sheaths. Bundles in the
outer half of the fruit are purely fibrous.
Legend applies to all the diagrams.









In Veitchia, the outer fibrous bundles
are elongate and parallel with the
surface, but can separate from one
another as the fruit expands.

In the least specialized members of the Ptychosperma alliance, such Veitchia and Normanbya, fibrous bundles have already been separated into two distinct groups, the inner bundles have at least some vascular tissue and form an interconnected network, while the outer bundles are devoid of vascular tissue altogether, and become disconnected from one another as the fruit expands.

In the remaining genera of the Ptychosperma alliance, the outer fibrous bundles have become quite short and clearly separate from one another.  They are confined to the exocarp and are mixed with the brachysclereids.  Variation on the arrangement of tissues, however, is significant, and can be used to identify the different genera.  Some examples are below, but so that this post won't get too long, I refer you to my original paper on the Ptychosperma alliance, for more details. Similar trends can be seen in the other alliances of the subtribe Areceae, also with distinctive arrangements in different genera, and papers on those can be accessed through my general list of publications.


In Ptychosperma and other advanced genera, inner
fruit tissues follow the distinctive grooves
of the seed. The outer fibrous bundles are small,
short, and perpendicular to the surface. 
In Ptychosperma, outer fibrous bundles are short
and perpendicular to the surface. Brachysclereids
fill in between them.



An isolated  outer fibrous bundle from
Brassiophoenix.
The large fruits of Ptychococcus have an
exceptionally thick, hard endocarp,
consisting of a thick locular epidermis, a
massive layer of sclerified parenchyma, and
a mantle of fibers formed from the fusion of
adjacent fibrous vascular bundles. Short
fibrous bundles also mingle with
brachysclereids in the exocarp.

The fruits of Brassiophoenix have an angular
endocarp, like that of Ptychococcus, but with
the fibrous vascular bundles embedded within
the sclerified parenchyma.