Showing posts with label transpiration. Show all posts
Showing posts with label transpiration. Show all posts

Thursday, May 7, 2015

Water potential explained



The short answer to the question "How does water get to the top of a redwood tree" was that trees function like gigantic, complex paper towels, and that a combination of capillary action and evaporation (transpiration) maintains a moving stream of water from the roots to the leaves.  But that's only half of the story.  The other half has to do with the living cells embedded within the "paper-towel matrix."  Their survival depends upon being able to draw water and minerals from the flow around them, but they also can move water and materials directly among themselves, creating an alternate path for moving fluids around the plant.

The movement of water into and out of living cells results from a balance of forces around them: primarily evaporation and solute concentration ("saltiness").  Evaporation and salt water can both remove water from cells, but living cells also contain enough solutes of their own to draw in fresh water from the soil.  Some other factors, such as gravity in tall trees, also influence the flow of water through a plant, but for most practical purposes we are concerned only with the roles of solutes and evaporation.

I should probably begin by providing a more proper term for that spongy mass of cellulose - the "paper-towel matrix" -  that permeates the plant.  That would be the apoplast, which translates as "outside of the cells."  Basically, the apoplast is the interconnected mass of cellulose walls that surround each cell, as well as the small spaces between them, and most importantly the empty tubes of the xylem tissues.  The apoplast is all non-living material secreted to the outside of the living cells.

Living plant cells are interconnected by tiny tubes of protoplasm called plasmodesmata, and water can  move directly from cell to cell through them.   This network is called the symplast.  On a sunny day, the net movement of water through both the symplast and the apoplast is upward toward the leaves, though it is much faster in the apoplast. Thus there are two parallel, cross-connected networks running through the plant.

Evaporation is the dominant force pulling water to the top of the plant, which is normally OK, but if excessive, can be a threat to the survival of the plant. Loss through evaporation has to be balanced by water absorbed from the soil.  If the soil dries out, it becomes an evaporative agent like the atmosphere, and can suck water back out of the roots.  Even if there is sufficient moisture in the soil, an excessively hot and dry atmosphere may pull water out of the plant faster than it can move up the plant.  Plants are generally adapted to the conditions of their native habitats, but can still perish in an extreme drought.

Now,  if you stick your favorite house plant into a bucket of saltwater, it is effectively the same as sticking them into dried-out soil.  The sodium and chloride ions in saltwater are solutes, the particles that can draw water across a cell membrane. The salt water would rise up through the apoplast, but in passing by the living cells, it would literally suck them dry.  The same thing happens to us if we drink salt water. This is due to osmosis: the movement of water across a cell membrane toward a region of lower water concentration (i.e. toward higher salt or solute concentration).  

Plants such as mangroves that grow in salty water have special adaptations to keep the salt away from their cells.  Some are able to filter out salt at the root surface, others have salt-excreting glands on their leaves, and still others accumulate salt crystals within their leaves, which are eventually shed from the plant. But ordinary plants without such adaptations will be killed by exposure to salt water.

The forces of solute concentration and evaporation can be quantified.  Water potential is the measurable tendency for water to move from one part of the plant system to another depending on the balance of forces around it. Water potential allows us to predict which way water will move and how fast it will move.  Water potential is expressed in negative numbers.  The highest water potential we find in plants is zero, and water will always moves into areas of more negative water potential.  The most negative areas of a plant are at the top where evaporation is occurring, and the least negative are in the roots.  So on a sunny day, the flow of water is upward from roots toward the leaves.

Pure water at sea level and average atmospheric pressure and temperature has a water potential of zero, measured in megapascals (MPa).  That's our reference point.  The water potential of a typical, well-hydrated soil is also close to zero, but is slightly negative due to some dissolved minerals in it. The atmosphere and salt water both have strongly negative water potentials sufficient to remove water from unprotected cells.

Plant cells contain minerals, sugars, and other solutes that make them more "salty" than the water in the soil. The water potential of living plant cells varies, but is generally about -0.2 in the roots. Progressing up the stem, the water potential decreases.  A typical figure in mid-stem might be around -.6 MPa.  In the leaves, where the cells are much closer to the site of evaporation, it can decrease to -1.5 or less.  All of this varies considerably depending on the height of the plant, the external conditions, and special adaptations of the plant for its particular environment.

 The atmosphere is usually pretty dry but that depends on the relative humidity.  Saturated air, on a damp, foggy night for example, will have a water potential near zero, and not much water will flow.  Typically though the water potential of the air will be -100 or lower.  Hot, dry desert air can have a water potential as low -300 or even -500 MPa.  This then sets up a gradient from the soil to the top of the plant that drives the flow of water.

Salt water (with salt concentration of 3%)  has a water potential of about -25 MPa (Tomlinson 2004), much more negative than the typical living plant cell.   Remember that water can flow either direction across a cell membrane, from whichever side has the higher water potential, as a result of osmosis.  Salinization of agricultural soil is a big problem in dry climates where irrigation water evaporates, leaving ever higher concentration of salts in the soil.  It becomes a necessity to seek more salt-resistant plants for continued productivity in such regions.

Something similar happens if you water a potted plant repeatedly without letting the excess water drain from the bottom of the pot.  Mineral salts in the water accumulate, making it harder for the plants to absorb water from the soil.

What about turgor pressure?  That is the positive pressure that builds up in healthy plant cells as a result of osmosis.  Turgor pressure drives many processes, such as cell expansion, phloem transport, and venus-flytrap closing (See "How plants do everything without moving a muscle").  It may seem contradictory that living plant cells maintain a negative water potential and at the same time a positive turgor pressure.  Turgor pressure is a direct result of water moving into a cell  because of its solute content (its "saltiness'), and does cancel out some of the overall water potential of the cell.  So the measured water potential of the cell is its negative solute potential plus its positive pressure potential (i.e. pressure potential minus the solute potential).

  At maximum turgor pressure, such as on a foggy night when there is no evaporation, the turgor potential and solute potential can balance out, resulting in a water potential near zero throughout the plant and no water movement.  But on a sunny day, evaporation creates a net upward flow of water  that runs through the symplast as well as the apoplast, so maximum turgor pressure is not reached.  This leaves the net water potential of the cells of the root negative enough to continue pulling water from the soil.

"Reverse osmosis" is a process for purifying sea water by applying sufficient pressure to overcome the solute potential of the seawater, forcing water molecules, but not salt particles, across a membrane similar to that which surrounds every living cell.  Such a membrane is called semipermeable.

Water moves freely through the apoplast by capillary action, and is drawn upward by evaporation in the leaves, especially in the xylem (left side of diagram). This is transpiration. Water is absorbed into cells by osmosis, particularly in the roots, which increases turgor pressure. Turgor pressure then pushes water through the symplast toward cells higher up that are losing water to evaporation, paralleling the flow in the xylem, but much more slowly. The tiny blue passageways between cells are plasmodesmata. Water does not evaporate directly from the xylem, but through leaf cells exposed to air chambers connected to stomata.  As water evaporates from the mesophyll cells of the leaf, their turgor pressure decreases, decreasing their overall water potential, and this causes them to continually absorb water from the xylem as well as from the living cells below.
References:

Tomlinson, P. B. 2004.  The Biology of Mangroves.  Cambridge University Press.

Monday, November 28, 2011

How does water get to the top of a redwood tree?


The upward movement of water more than 100 meters in a redwood or eucalyptus (there is  a traditional dispute between Americans and Australians over who has the tallest trees!) seems to be a gravity-defying task of epic proportions.  Gravity is certainly a factor, and ultimately limits how tall a tree can get, but there are other forces at work that can meet that challenge.  The amazing thing about plants is that the process is largely passive, in the sense that plants expend practically no energy to accomplish it.  There are no muscles and no heart in a tree to pump water upward.  What there is, is basically a gigantic paper towel.

You may recall the ads for the “Bounty Quicker-Picker-Upper”  a decade or two ago.  In the ads, these paper towels quickly absorbed any spilled liquid.  You can take a paper towel (even a cheap slower-picker-upper), roll it into a tube, and stick the end in water. You’ll quickly see the water begin creeping up the paper towel.  We see the same gravity-defying process in plants.  What is a paper towel made of?  Wood!  And the magic ingredient in both a paper towel and a living plant is cellulose. 

Every plant cell is wrapped in a layer of cellulose – the cell wall.   In wood, the cells of the xylem die after laying down strong cellulose walls, leaving the latter as narrow, empty conducting tubes.  These tubes line up so as create masses of interconnected passageways through which water can move freely.  So a tree trunk is essentially a massive, non-living, interwoven paper towel.   

But what is the interaction between cellulose and water?  What is the force that can overcome gravity?  The short answer is magnetism.

Magnets can defy gravity by lifting nails and other iron objects.  No, neither cellulose nor water is made of iron, but the forces involved are similar.  A molecule of water is electrically charged.  Imagine each molecule as a Mickey Mouse head.  The face is an atom of oxygen, and the ears a pair of hydrogen atoms.   The two types of atoms are bound together by sharing electrons, but the oxygen atom holds onto the electrons much more tightly than the hydrogen atoms do.  the result is that the electrons hang out around the oxygen atom most of the time, giving its side of the molecule a net negative charge.  The two hydrogen atoms are left with a net positive charge as they are visited less often by the electrons.   Thus water molecules are thus like tiny magnets and tend to stick together.  This actually is what makes water liquid, rather than a gas, at room temperature, and which accounts for a lot of other properties that we don’t have time to review here.

It so happens that the complex surface of cellulose fibers also have positive and negative charges, and so attracts water molecules.  In a paper towel, water molecules are pulled into every available niche in the cellulose matrix.  Those at the top are pulled into higher niches, which pulls more water molecules from the bottom.  Narrow spaces within the matrix also fill with water molecules, which attract and pull each other in.  This happens until the towel is saturated and there is no room for any more water. 
The water molecule (A) consists of a negatively charged oxygen atom and two positively charged hydrogen atoms.  This causes them to stick together in chains (B) and to the walls of cellulose fibers (C).

If we return to our rolled up paper towel with the end sitting in the water, we can watch something else happening over time.  The paper towel only gets saturated at the base, and even remains fairly dry at the top.  But given enough time, the container of water it is standing in will completely dry up.  Of course what is happening is that the water that has moved up the column continually evaporates when exposed to the air, leaving spaces for more water molecules to move up.  The result is a steady stream of water moving upward, drawn by both evaporation and the electromagnetic attraction of water molecules to the cellulose and to each other. 

This is the process of transpiration, which is powerful enough to lift water and dissolved minerals to the top of a tall tree.   It continues as long as water is evaporating through the leaves.  In extremely humid weather, or if the leaf pores (stomata) shut down for the night, the stream is suspended in place until evaporation resumes again later. 

I should note that a tall tree, if dried out, cannot start this process from scratch.  Gravity will stop the electromagnetic movement of water long before it can reach the evaporation zone of the leaves.  The transpiration stream develops in a germinating tree seedling and is maintained and strengthened as the tree grows, but if that stream should be broken (interrupted by extensive air bubbles) in an extreme drought, it cannot be repaired and the tree will die.   Only small plants like mosses can completely dehydrate and recover when wet conditions return.