1. A cell wall. This is not the same thing as a cell membrane, but laid down outside of it by secretions of cellulose and other materials from the cytoplasm. The cell wall is thus a non-living layer of material between cells. A cell wall is more-or-less rigid, yet generally porous. Its primary function is to prevent the cell from bursting as water flows in through osmosis. Animal cells don't have a wall, and if placed in distilled water will expand until they burst. As I explained in a recent post, plants utilize that intrinsic turgor pressure for a variety purposes, such as expansion of tissues during growth, transport of food and other materials around the plant, holding soft foliage upright, and movements like the closing of venus fly traps.
2. A large central vacuole. This is essentially a big bag of water in the center of each cell, surrounded by its own membrane. This is key to the phenomenal growth rates of young plant parts. The living cytoplasm occupies a relatively thin zone around the periphery of the cell. Water absorbed by the cell can be stored in the vacuole without diluting the cytoplasm, allowing cells to expand many fold. The central vacuole also serves as a depository for waste materials and defensive chemical substances.
3. Plastids. The most recognizable plastid is the chloroplast, which gives the plant its signature property of photosynthesis. Other forms of plastids are modified to store various materials, such as starch, oils, or pigments.
Parenchyma cells are complete living cells with thin walls and active cytoplasm. This image is from a video posted on Youtube, in which you can see the chloroplasts moving around the cell. |
The parenchyma cells in a potato tuber are filled with starch-storing leucoplasts (purple-stained bodies). |
A mass of parenchyma tissue on land would flop on the ground and quickly dry out. It would be okay underwater, and in fact most algae consist of nothing but parenchyma. So land plants need specialized tissues for internal structural support (sclerenchyma and collenchyma), an external waterproofing layer (epidermis or cork), and internal water and food conducting tissues (vascular tissues: xylem and phloem).
In comparison with parenchyma, specialized cell types are characterized by something being missing, something being exaggerated, or both. In other words, they are structurally modified for specialized functions. In sclerenchyma tissues and the water-conducting xylem, cell walls are quite thick and very rigid, while the cytoplasm is essentially non-functional or completely gone. Once mature, these cells function only as empty cell walls.
Fibers, as in this palm fruit, are most often bundled into thick strands. |
Fibers are particularly well-developed in monocots, which lack wood. The trunk of a palm tree is made up of thousands of fibrous bundles running through a parenchyma matrix. Palm leaves are likewise reinforced with fibrous bundles that act as support cables. The softer leaves of banana plants are also supported by bundles of fibers, and one species (Musa textilis) is the source of the commercial Manila hemp fiber. Softer fibers in the flax plant (Linum usitatissimum), a eudicot, are used to make the fine fabric known as linen.
The epidermal cells of the developing bean have been modified into closely packed elongate sclereids. |
The shell of a walnut is mostly sclereids, densely packed and glued together like bricks to create a protective wall that can be breached only by animals with special tools, such as rodents with their chisel-like teeth. The gritty patches of sclerieds just below the surface of a pear protect it from insects when it is small, but spread apart as it matures, making it palatable to the larger animals that disperse its seeds. The outer husk of a coconut is made of fibers intermixed with light, airy tissues that allow the whole fruit to float on water.
The long "strings" that line the angles of a celery stalk are made of collenchyma cells. The thickened primary walls run together to form a light colored matrix around the darker protoplasts. |
Collenchyma is a specialized soft supportive tissue, where the rigidity comes from thick, water-filled cell walls. These are primary cell walls, consisting of a loose matrix of cellulose, unlike the dense secondary walls of sclerenchyma. Collenchyma is rapidly produced and common in young, growing herbaceous stems and leaves.
A xylem vessel consists of a stack of thickened, cylindrical cell walls (vessel elements) abandoned by the protoplasts that formed them. Tracheids are single cells. Modified from Slideshare.net. |
The cells that make up a sieve tube (sieve tube members) are partially broken down. The nucleus, central vacuole, and mitochondria are gone, and the modified cytoplasm serves as the medium for carrying dissolved sugar through the tube. The end walls are also called sieve plates, for they contain large pores to accomodate the flowing fluid. The companion cells are fully functioning parenchyma cells. Modified from Slideshare.net |
Phloem tissue consists of the food-conducting sieve tubes, companion cells, parenchyma and fibers. The sieve tubes consist of a series of cells that contain a cytoplasm-like fluid, but lack nuclei and other organelles. Sugar and other organic substances are loaded into the fluid and flow from one part of the plant under the force of turgor pressure. Large pores at the ends of the sieve tube elements allow the fluids to pass through freely. Companion cells are specialized, metabolically active parenchyma cells that run parallel to the sieve tubes and perform some metabolic functions for them. They also help load the sugar into the phloem.
A vascular bundle, as seen here in a Ranunculus stem, is a complex assemblage of xylem, phloem, narrow parenchyma cells, and fibers, embedded in the mass of larger parenchyma cells. |
In this succulent stem, the epidermis is reinforced by a layer of sclereids, and covered by a thick cuticle. No stomata are visible in this picture. |
Stiff bristles emerge from the epidermal cells of maize leaves. The outgrowths of epidermal cells are generally known as trichomes. |
Epidermal cells are living cells on the surface of plant organs and so are modifed for protection against water loss and invading organisms. They don't usually contain chloroplasts, but are active in other ways, and under some circumstances can divide. The epidermis usually contains specialized cells, including embedded sclereids, glandular cells and the important guard cells that open and close pores (stomata) in the epidermis, allowing for gas exchange. Epidermal cells also secrete on their outer surface a cuticle, made of a hard polymer called cutin. The cuticle prevents water loss from the plant, except through the stomata. Some plants even secrete a layer of was over the cuticle for additional waterproofing. The thick layer of wax on the leaves of the Carnauba wax palm (Copernicia prunifera) is used commercially to make fine, hard car waxes. Epidermal cells may also sport a wide variety of hairs, bristles and scales, collectively known as trichomes.
Cork tissue may be laid down on older stems and roots through cell divisions in the epidermis, the parenchyma below the epidermis, or from older phloem tissues. It consists of empty, thin-walled, waterproof cells.
Stomata are important elements of the epidermis. They consist of a pore flanked by a pair of guard cells that can change shape to open or close the pore. This allows for gas exchange needed for photosynthesis, or to seal the plant against water loss during dry or inactive periods. From micro-scopic.tumbler |
The trichomes produced by the epidermal cells of a carnivorous sundew (Drosera) contain glands that exude a sticky, digestive juice. |
Within these basic cell types there is amazing variation in shape and distribution. Families, genera, and even species in some cases, can be recognized by the pattern of their internal tissues. The study of this variation is plant anatomy, which in turn is one of the most important tools in forensics, as well as in archeology and paleobotany. In coming posts, I will explore some of this variation.
This article is a nice refresher as well as informative! Your attention to detail ensures that I learn something new from your posts.
ReplyDeleteThank you. This is a great resource for my high school Botany students. You articulate the material well. The pictures come just as the questions are forming. Thank you for your time and investment.
ReplyDelete